Math 246B Lecture 17 Notes

Daniel Raban

February 26, 2019

1 Factorization of Entire Functions of Finite Order

1.1 Number of zeros of entire functions of finite order

Last time, we proved Jensen's formula.

Theorem 1.1. Let f be entire of finite order ρ , and let $n(r) = |\{z : |z| < r, f(z) = 0\}|$. Then for all $\varepsilon > 0$ there exists a constant C_{ε} such that

$$n(r) \le C_{\varepsilon} r^{\rho + \varepsilon}$$

for all $r \geq 1$.

Proof. If $f(0) \neq 0$, then

$$\int_{0}^{2r} \frac{n(t)}{t} dt \ge \int_{r}^{2r} \frac{n(t)}{t} dt = n(r) \log(2),$$

where the inequality comes from the fact that n is increasing. Using Jensen's formula,

$$\log(2)n(r) \le \frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\varphi})| \, d\varphi + C \le C_{\varepsilon} + Cr^{\rho+\varepsilon} + C \le C_{\varepsilon}r^{\rho+\varepsilon}.$$

If f(0) = 0, apply the previous argument to $g(z) = f(z)/z^m$, where *m* is the multiplicity of 0. Since $n(r) = n_g(r) + m$, we get the result.

1.2 Weierstrass factors and Weierstrass' theorem for $\mathbb C$

Definition 1.1. When $m \ge 0$ is an integer, we define the Weierstrass factors¹ as

$$E_m(z) = (1-z)e^{\sum_{i=1}^m z^j/j}$$

¹Weierstrass used these in his proof of Weierstrass' theorem. We did not.

Remark 1.1. We would like to consider infinite products of the form

$$\prod (1 - z/a_k) e^{-g(z/a_k)},$$

where $|a_k| \to \infty$ and where g should approximate $\log(1-z) = -\sum_{j=1}^{\infty} z^j/j$ for |z| < 1. The idea of the Weierstrass factors is that the factors are the partial sums of this approximation.

Lemma 1.1. For all |z| < 1,

$$|1 - E_m(z)| \le |z|^{m+1}.$$

Proof. Let $h(z) = 1 - E_m(z)$, so h(0) = 0. Compute

$$h'(z) = e^{\sum_{j=1}^{m} z^j / j} (1 + z\varphi'(z) - \varphi'(z))' = z^m e^{\sum_{j=1}^{m} z^j / j}$$

So $h(z) = O(|z|^{m+1})$, and we see that $h(z)/z^{m+1}$ is holomorphic on \mathbb{C} . We have

$$h'(z) = z^m (1 + a_1 z + a_2 z^2 + \cdots)$$

with $a_j \ge 0$ for all j. Integrating, we get

$$h(z) = z^{m+1}(b_0 + b_1 z + b_2 z^2 + \cdots),$$

with $b_j \ge 0$ for all j. If we write $g(z) = h(z)/z^{m+1}$, then

$$|g(z)| \le g(|z|) \le g(1) = h(1) = 1.$$

Theorem 1.2 (Weierstrass' theorem for \mathbb{C}). Let $(a_k)_{k=1}^{\infty}$ be a sequence in $\mathbb{C} \setminus \{0\}$ such that $|a_k| \to \infty$ as $k \to \infty$. Then the canonical product

$$f(z) = \prod_{k=1}^{\infty} E_k(z/a_k)$$

converges locally uniformly in \mathbb{C} and defines an entire function f such that $f^{-1}(\{0\}) = \{a_k\}$ and the multiplicity of $a \in f^{-1}(\{0\})$ is the number of k such that $a = a_k$.

Proof. It suffices to check that for any compact set $K \subseteq \mathbb{C}$,

$$\sum_{k=1}^{\infty} \sup_{K} |1 - E_k(z/a_k)| < \infty.$$

 $K \subseteq \{|z| \le |a_k|/2\}$ for all k large enough, and by the lemma,

$$|a - E_k(z/a_k)| \le |z/a_k|^{k+1} \le 2^{-k}$$

The result follows.

1.3 Factorization of entire functions of finite order

Now assume that f is entire of finite order ρ with the zeros $a_k \neq 0$ counted with multiplicities such that $|a_1| \leq |a_2| \leq \cdots$ and $|a_k| \to \infty$.

Proposition 1.1. The series

$$\sum_{k=1}^{\infty} \frac{1}{|a_k|^{m+1}} < \infty.$$

provided that $m > \rho - 1$. Proof. Write

$$\sum_{|a_k|\geq 1} |a_k|^{-m-1} = \sum_{j=0}^{\infty} \underbrace{\left(\sum_{\substack{2^j\leq |a_k|\leq a^{j+1}\\2^{-j(m+1)}n(2^{j+1})}} |a_k|^{-m-1}\right)}_{2^{-j(m+1)}n(2^{j+1})}$$
$$\leq \sum_{j=0}^{\infty} C_{\varepsilon} 2^{(j+1)(\rho+\varepsilon)} 2^{-j(m+1)}$$
$$\leq C_{\varepsilon} \sum_{j=0}^{\infty} 2^{j(\rho+\varepsilon-m-1)} < \infty$$

if $\rho + \varepsilon < m + 1$.

Proposition 1.2. Let m be the smallest integer such that $m > \rho - 1$ (so that $m \le \rho < m + 1$). The canonical product

$$\prod_{k=1}^{\infty} E_m(z/a_k)$$

converges locally uniformly in \mathbb{C} .

Remark 1.2. The improvement here is that we can use a fixed Weierstrass factor here instead of having it depend on k.

Proof. If
$$|z| < a_k/2$$
, then $|1 - E_m(z/a_k)| \le |z/a_k|^{m+1}$. So for compact $K \subseteq \mathbb{C}$,

$$\sum_K \sup_K |1 - E_m(z/a_k)| < \infty.$$

To summarize, we can write:

$$f(z) = e^{g(z)} z^p \prod_{k=1}^{\infty} E_m(z/a_k),$$

where o is the multiplicity of 0 as the zero of f, and g is entire. This will allow us to understand the structure of entire functions of finite order in the following way:

Theorem 1.3 (Hadamard). The function g is a polynomial of degree $\leq \rho$.