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1 Factorization of Entire Functions of Finite Order

1.1 Number of zeros of entire functions of finite order

Last time, we proved Jensen’s formula.

Theorem 1.1. Let f be entire of finite order ρ, and let n(r) = |{z : |z| < r, f(z) = 0}|.
Then for all ε > 0 there exists a constant Cε such that

n(r) ≤ Cεrρ+ε

for all r ≥ 1.

Proof. If f(0) 6= 0, then ∫ 2r

0

n(t)

t
dt ≥

∫ 2r

r

n(t)

t
dt = n(r) log(2),

where the inequality comes from the fact that n is increasing. Using Jensen’s formula,

log(2)n(r) ≤ 1

2π

∫ 2π

0
log |f(reiϕ)| dϕ+ C ≤ Cε + Crρ+ε + C ≤ Cεrρ+ε.

If f(0) = 0, apply the previous argument to g(z) = f(z)/zm, where m is the multiplicity
of 0. Since n(r) = ng(r) +m, we get the result.

1.2 Weierstrass factors and Weierstrass’ theorem for C

Definition 1.1. When m ≥ 0 is an integer, we define the Weierstrass factors1 as

Em(z) = (1− z)e
∑m

i=1 z
j/j .

1Weierstrass used these in his proof of Weierstrass’ theorem. We did not.
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Remark 1.1. We would like to consider infinite products of the form∏
(1− z/ak)e−g(z/ak),

where |ak| → ∞ and where g should approximate log(1−z) = −
∑∞

j=1 z
j/j for |z| < 1. The

idea of the Weierstrass factors is that the factors are the partial sums of this approximation.

Lemma 1.1. For all |z| < 1,
|1− Em(z)| ≤ |z|m+1.

Proof. Let h(z) = 1− Em(z), so h(0) = 0. Compute

h′(z) = e
∑m

j=1 z
j/j(1 + zϕ′(z)− ϕ′(z))′ = zme

∑m
j=1 z

j/j .

So h(z) = O(|z|m+1), and we see that h(z)/zm+1 is holomorphic on C. We have

h′(z) = zm(1 + a1z + a2z
2 + · · · )

with aj ≥ 0 for all j. Integrating, we get

h(z) = zm+1(b0 + b1z + b2z
2 + · · · ),

with bj ≥ 0 for all j. If we write g(z) = h(z)/zm+1, then

|g(z)| ≤ g(|z|) ≤ g(1) = h(1) = 1.

Theorem 1.2 (Weierstrass’ theorem for C). Let (ak)
∞
k=1 be a sequence in C\{0} such that

|ak| → ∞ as k →∞. Then the canonical product

f(z) =
∞∏
k=1

Ek(z/ak)

converges locally uniformly in C and defines an entire function f such that f−1({0}) = {ak}
and the multiplicity of a ∈ f−1({0}) is the number of k such that a = ak.

Proof. It suffices to check that for any compact set K ⊆ C,

∞∑
k=1

sup
K
|1− Ek(z/ak)| <∞.

K ⊆ {|z| ≤ |ak|/2} for all k large enough, and by the lemma,

|a− Ek(z/ak)| ≤ |z/ak|k+1 ≤ 2−k.

The result follows.
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1.3 Factorization of entire functions of finite order

Now assume that f is entire of finite order ρ with the zeros ak 6= 0 counted with multiplic-
ities such that |a1| ≤ |a2| ≤ · · · and |ak| → ∞.

Proposition 1.1. The series
∞∑
k=1

1

|ak|m+1
<∞.

provided that m > ρ− 1.

Proof. Write ∑
|ak|≥1

|ak|−m−1 =
∞∑
j=0

 ∑
2j≤|ak|≤aj+1

|ak|−m−1


︸ ︷︷ ︸
2−j(m+1)n(2j+1)

≤
∞∑
j=0

Cε2
(j+1)(ρ+ε)2−j(m+1)

≤ Cε
∞∑
j=0

2j(ρ+ε−m−1 <∞

if ρ+ ε < m+ 1.

Proposition 1.2. Let m be the smallest integer such that m > ρ − 1 (so that m ≤ ρ <
m+ 1). The canonical product

∞∏
k=1

Em(z/ak)

converges locally uniformly in C.

Remark 1.2. The improvement here is that we can use a fixed Weierstrass factor here
instead of having it depend on k.

Proof. If |z| < ak/2, then |1− Em(z/ak)| ≤ |z/ak|m+1. So for compact K ⊆ C,∑
sup
K
|1− Em(z/ak)| <∞.

To summarize, we can write:

f(z) = eg(z)zp
∞∏
k=1

Em(z/ak),

where o is the multiplicity of 0 as the zero of f , and g is entire. This will allow us to
understand the structure of entire functions of finite order in the following way:

Theorem 1.3 (Hadamard). The function g is a polynomial of degree ≤ ρ.

3


	Factorization of Entire Functions of Finite Order
	Number of zeros of entire functions of finite order
	Weierstrass factors and Weierstrass' theorem for C
	Factorization of entire functions of finite order


