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1 Factorization of Entire Functions of Finite Order

1.1 Number of zeros of entire functions of finite order

Last time, we proved Jensen’s formula.

Theorem 1.1. Let f be entire of finite order p, and let n(r) = |{z : |z| < r, f(z) = 0}].
Then for all € > 0 there exists a constant C. such that

n(r) < Cerfte
forallr > 1.

Proof. If f(0) # 0, then

2r r
/0 (tt) dt > /r Sf) dt = n(r)log(2),

where the inequality comes from the fact that n is increasing. Using Jensen’s formula,

1 2m )
log(2)n(r) < 2/ log | f(re"?)|dy + C < C. + CrP™ + C < CorP™e,
T Jo

m

If f(0) =0, apply the previous argument to g(z) = f(z)/z™, where m is the multiplicity
of 0. Since n(r) = ng(r) + m, we get the result. O
1.2 Weierstrass factors and Weierstrass’ theorem for C

Definition 1.1. When m > 0 is an integer, we define the Weierstrass factors' as

Ep(z) = (1 — 2)eXiz /i,

"Weierstrass used these in his proof of Weierstrass’ theorem. We did not.




Remark 1.1. We would like to consider infinite products of the form
[T = =/aeotion),

where |ay| — oo and where g should approximate log(1—2) = — 372, 27 /j for |z] < 1. The
idea of the Weierstrass factors is that the factors are the partial sums of this approximation.

Lemma 1.1. For all |2| < 1,
1= B(2)] < 2™,

Proof. Let h(z) =1 — E;,(z), so h(0) = 0. Compute
h'(z) = ez?:lzj/j(l +2¢/'(2) = ¢'(2)) = ZmeXim12 /i

So h(z) = O(]z|™*1), and we see that h(z)/z™*! is holomorphic on C. We have

B (z)=2"(14 a1z +agz* + )
with a; > 0 for all j. Integrating, we get

h(z) = 2" (bg + byz + boz? 4+ -+ +),

with b; > 0 for all j. If we write g(2) = h(z)/2™"L, then

l9(2)] < g(lz]) < g(1) = h(1) =1. 0
Theorem 1.2 (Weierstrass’ theorem for C). Let (a)72, be a sequence in C\ {0} such that
lax| — o0 as k — oco. Then the canonical product

f(z) = 11 Brz/ar)
k=1

converges locally uniformly in C and defines an entire function f such that f~1({0}) = {ax}
and the multiplicity of a € f~1({0}) is the number of k such that a = a,.
Proof. It suffices to check that for any compact set K C C,
oo
Zsup |1 — Ex(z/ag)| < oo.
k=1 K
K C {|z| < |ag|/2} for all k large enough, and by the lemma,
la — E(z/az)| < |z/aFtt < 27k

The result follows. O



1.3 Factorization of entire functions of finite order

Now assume that f is entire of finite order p with the zeros aj # 0 counted with multiplic-
ities such that |a1| < |az| < -+ and |ag| — oo.

Proposition 1.1. The series

Z | k|m+1

provided that m > p — 1.
Proof. Write

[o¢]
Dl =31 X e
lax|>1 J=0 \27<Jay|<ait!

ij(m+1)n(2j+1)

< Z C. 20+ (pte)g=i(m+1)
7=0

< CEZQJ(P+E m=1 _ oo
j=0
ifp+e<m+1. O
Proposition 1.2. Let m be the smallest integer such that m > p — 1 (so that m < p <
m+1). The canonical product
oo
I En(z/ar)
k=1

converges locally uniformly in C.

Remark 1.2. The improvement here is that we can use a fixed Weierstrass factor here
instead of having it depend on k.

Proof. 1f |z| < ay/2, then |1 — Ep,(z/a)| < |z/ar|™ L. So for compact K C C,
Zsup|1— m(z/ar)| < oo. O

To summarize, we can write:

f(2) = D[] E(z/ar),

k=1
where o is the multiplicity of 0 as the zero of f, and g is entire. This will allow us to
understand the structure of entire functions of finite order in the following way:

Theorem 1.3 (Hadamard). The function g is a polynomial of degree < p.
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